Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
J Nat Med ; 78(2): 382-392, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347371

RESUMO

A new dimeric indole alkaloid, vincazalidine A consisting of an aspidosperma type and a modified iboga type with 1-azatricyclo ring system consisting of one azepane and two piperidine rings coupled with an oxazolidine ring was isolated from Catharanthus roseus, and the structure including absolute stereochemistry was elucidated on the basis of spectroscopic data as well as DP4 statistical analysis. Vincazalidine A induced G2 arrest and subsequent apoptosis in human lung carcinoma cell line, A549 cells.


Assuntos
Alcaloides , Antineoplásicos , Aspidosperma , Catharanthus , Humanos , Catharanthus/química , Catharanthus/metabolismo , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Aspidosperma/química , Aspidosperma/metabolismo
2.
J Nat Med ; 78(1): 216-225, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37668823

RESUMO

A dimeric indole alkaloid, isovincathicine consisting of an aspidosperma type and modified iboga with C-7-C-20 connection type skeletons was first isolated from Catharanthus roseus, and the structure including stereochemistry was elucidated on the basis of spectroscopic data as well as DP4 statistical analysis. Isovincathicine inhibited cell proliferation in A549 cells. We investigated the detailed mode of action of isovincathicine-induced inhibitory effects on cell proliferation in A549 cells. Flow cytometric analysis showed that isovincathicine-treated cells accumulated in the G2 phase after 24 h, and the percentage of cells showing cell death increased after 48 h. Western blotting also showed increased expression of BimEL, an apoptosis-related protein, and decreased expression of Mcl-1 and Bcl-xL. Isovincathicine was suggested to induce apoptosis in A549 cells by a mechanism is similar to that of vinblastine.


Assuntos
Catharanthus , Humanos , Catharanthus/química , Catharanthus/metabolismo , Células A549 , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Apoptose
3.
Org Lett ; 26(1): 274-279, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38134219

RESUMO

Chemical investigation of the emblematic Catharanthus roseus led to the discovery of trirosaline (1), the first example of a tris-ajmalicine-type monoterpene indole alkaloid and the first natural trimeric MIA ever reported from this deeply dug plant species. Its structure was primarily elucidated based on NMR and HRESIMS analyses, and the nature of its unique intermonomeric linkages was firmly confirmed based on a combination of empirical computation and ML-J-DP4 study. Its absolute configuration was mitigated by comparison of experimental and TDDFT-simulated electronic circular dichroism (ECD) spectra. A possible biosynthetic pathway for trirosaline (1) was postulated.


Assuntos
Catharanthus , Alcaloides de Triptamina e Secologanina , Monoterpenos , Catharanthus/química , Catharanthus/metabolismo , Alcaloides Indólicos/química , Aprendizado de Máquina , Proteínas de Plantas/química
4.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110876

RESUMO

Catharanthus roseus is a medicinal plant that produces indole alkaloids, which are utilized in anticancer therapy. Vinblastine and vincristine, two commercially important antineoplastic alkaloids, are mostly found in the leaves of Catharanthus roseus. ĸ-carrageenan has been proven as plant growth promoting substance for a number of medicinal and agricultural plants. Considering the importance of ĸ-carrageenan as a promoter of plant growth and phytochemical constituents, especially alkaloids production in Catharanthus roseus, an experiment was carried out to explore the effect of ĸ-carrageenan on the plant growth, phytochemicals content, pigments content, and production of antitumor alkaloids in Catharanthus roseus after planting. Foliar application of ĸ-carrageenan (at 0, 400, 600 and 800 ppm) significantly improved the performance of Catharanthus roseus. Phytochemical analysis involved determining the amount of total phenolics (TP), flavonoids (F), free amino acids (FAA), alkaloids (TAC) and pigments contents by spectrophotometer, minerals by ICP, amino acids, phenolic compounds and alkaloids (Vincamine, Catharanthine, Vincracine (Vincristine), and vinblastine) analysis uses HPLC. The results indicated that all examined ĸ-carrageenan treatments led to a significant (p ≤ 0.05) increase in growth parameters compared to the untreated plants. Phytochemical examination indicates that the spray of ĸ-carrageenan at 800 mg L-1 increased the yield of alkaloids (Vincamine, Catharanthine and Vincracine (Vincristine)) by 41.85 µg/g DW, total phenolic compounds by 3948.6 µg gallic/g FW, the content of flavonoids 951.3 µg quercetin /g FW and carotenoids content 32.97 mg/g FW as compared to the control. An amount of 400 ppm ĸ-carrageenan treatment gave the best contents of FAA, Chl a, Chl b and anthocyanin. The element content of K, Ca, Cu, Zn and Se increased by treatments. Amino acids constituents and phenolics compounds contents were altered by ĸ-carrageenan.


Assuntos
Alcaloides , Catharanthus , Alcaloides de Triptamina e Secologanina , Alcaloides de Vinca , Vincamina , Vimblastina/farmacologia , Vincristina/farmacologia , Carragenina/farmacologia , Catharanthus/química , Vincamina/farmacologia , Alcaloides/farmacologia , Compostos Fitoquímicos/farmacologia , Flavonoides/farmacologia , Aminoácidos/metabolismo , Alcaloides de Triptamina e Secologanina/farmacologia
5.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771067

RESUMO

The presence of endophytes in plants is undeniable, but how significant their involvement is in the host plant biosynthetic pathways is still unclear. The results reported from fungicide treatments in plants varied. Fungicide treatment in Taxus was found to decrease the taxol content. In Ipomoea asarifolia, Pronto Plus and Folicur treatments coincided with the disappearance of ergot alkaloids from the plant. In Narcissus pseudonarcissus cv. Carlton, a mixture of fungicide applications decreased the alkaloids concentration and altered the carbohydrate metabolism. Jacobaea plants treated with Folicur reduced the pyrrolizidine alkaloids content. There have not been any studies into the involvement of endophytic fungi on alkaloids production of Catharanthus roseus until now. Though there is a report on the isolation of the endophytic fungi, Fusarium oxysporum from C. roseus, which was reported to produce vinblastine and vincristine in vitro. To detect possible collaborations between these two different organisms, fungicides were applied to suppress the endophytic fungi in seedlings and then measure the metabolomes by 1HNMR and HPLC analysis. The results indicate that endophytic fungi were not directly involved in alkaloids biosynthesis. Treatment with fungicides influenced both the primary and secondary metabolism of C. roseus. The systemic fungicides Pronto Plus and Folicur caused an increase in loganin and secologanin levels. In contrast, control samples had higher level of catharanthine and vindoline. This means that fungicide treatments cause changes in plant secondary metabolism.


Assuntos
Alcaloides , Antineoplásicos , Catharanthus , Fungicidas Industriais , Alcaloides de Triptamina e Secologanina , Plântula/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Catharanthus/química , Alcaloides/metabolismo , Vincristina/metabolismo , Antineoplásicos/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo
6.
Med ; 3(11): 727-729, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36370691

RESUMO

Plants are a rich source of chemotherapeutics and other essential medicines, but plant-based drug supply chains are unsustainable. Writing in Nature, Zhang et al.1 demonstrated a proof-of-concept alternate source of the anticancer drug vinblastine by engineering yeast to convert sugar and amino acids into its direct precursors, catharanthine and vindoline.


Assuntos
Antineoplásicos , Catharanthus , Catharanthus/química , Saccharomyces cerevisiae/genética , Antineoplásicos/metabolismo , Reatores Biológicos
7.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234756

RESUMO

Background: Type 2 diabetes mellitus (DM2) is a chronic and sometimes fatal condition which affects people all over the world. Nanotherapeutics have shown tremendous potential to combat chronic diseases­including DM2­as they enhance the overall impact of drugs on biological systems. Greenly synthesized silver nanoparticles (AgNPs) from Catharanthus roseus methanolic extract (C. AgNPs) were examined primarily for their cytotoxic and antidiabetic effects. Methods: Characterization of C. AgNPs was performed by UV−vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and atomic force microscopy (AFM). The C. AgNPs were trialed on Vero cell line and afterwards on an animal model (rats). Results: The C. AgNPs showed standard structural and functional characterization as revealed by FTIR and XRD analyses. The zetapotential analysis indicated stability while EDX analysis confirmed the formation of composite capping with Ag metal. The cytotoxic effect (IC50) of C. AgNPs on Vero cell lines was found to be 568 g/mL. The animal model analyses further revealed a significant difference in water intake, food intake, body weight, urine volume, and urine sugar of tested rats after treatment with aqueous extract of C. AgNPs. Moreover, five groups of rats including control and diabetic groups (NC1, PC2, DG1, DG2, and DG3) were investigated for their blood glucose and glycemic control analysis. Conclusions: The C. AgNPs exhibited positive potential on the Vero cell line as well as on experimental rats. The lipid profile in all the diabetic groups (DG1-3) were significantly increased compared with both of the control groups (p < 0.05). The present study revealed the significance of C. AgNPs in nanotherapeutics.


Assuntos
Catharanthus , Diabetes Mellitus Tipo 2 , Nanopartículas Metálicas , Animais , Antibacterianos/farmacologia , Glicemia , Catharanthus/química , Linhagem Celular , Hipoglicemiantes/farmacologia , Lipídeos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Difração de Raios X
8.
Nature ; 609(7926): 341-347, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045295

RESUMO

Monoterpene indole alkaloids (MIAs) are a diverse family of complex plant secondary metabolites with many medicinal properties, including the essential anti-cancer therapeutics vinblastine and vincristine1. As MIAs are difficult to chemically synthesize, the world's supply chain for vinblastine relies on low-yielding extraction and purification of the precursors vindoline and catharanthine from the plant Catharanthus roseus, which is then followed by simple in vitro chemical coupling and reduction to form vinblastine at an industrial scale2,3. Here, we demonstrate the de novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast, and in vitro chemical coupling to vinblastine. The study showcases a very long biosynthetic pathway refactored into a microbial cell factory, including 30 enzymatic steps beyond the yeast native metabolites geranyl pyrophosphate and tryptophan to catharanthine and vindoline. In total, 56 genetic edits were performed, including expression of 34 heterologous genes from plants, as well as deletions, knock-downs and overexpression of ten yeast genes to improve precursor supplies towards de novo production of catharanthine and vindoline, from which semisynthesis to vinblastine occurs. As the vinblastine pathway is one of the longest MIA biosynthetic pathways, this study positions yeast as a scalable platform to produce more than 3,000 natural MIAs and a virtually infinite number of new-to-nature analogues.


Assuntos
Antineoplásicos , Reatores Biológicos , Vias Biossintéticas , Engenharia Metabólica , Saccharomyces cerevisiae , Vimblastina , Alcaloides de Vinca , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/provisão & distribuição , Catharanthus/química , Genes Fúngicos , Genes de Plantas , Engenharia Metabólica/métodos , Fosfatos de Poli-Isoprenil , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triptofano , Vimblastina/biossíntese , Vimblastina/química , Vimblastina/provisão & distribuição , Alcaloides de Vinca/biossíntese , Alcaloides de Vinca/química , Alcaloides de Vinca/provisão & distribuição
9.
Appl Microbiol Biotechnol ; 106(7): 2337-2347, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35333954

RESUMO

Catharanthus roseus (Madagascar periwinkle), a medicinal plant possessing high pharmacological attributes, is widely recognized for the biosynthesis of anticancer monoterpenoid indole alkaloids (MIAs) - vinblastine and vincristine. The plant is known to biosynthesize more than 130 different bioactive MIAs, highly acclaimed in traditional and modern medicinal therapies. The MIA biosynthesis is strictly regulated at developmental and spatial-temporal stages and requires a well-defined cellular and sub-cellular compartmentation for completion of the entire MIAs biosynthesis. However, due to their cytotoxic nature, the production of vinblastine and vincristine occurs in low concentrations in planta and the absence of chemical synthesis alternatives projects a huge gap in demand and supply, leading to high market price. With research investigations spanning more than four decades, plant tissue culture and metabolic engineering (ME)-based studies were attempted to explore, understand, explain, improve and enhance the MIA biosynthesis using homologous and heterologous systems. Presently, metabolic engineering and synthetic biology are the two powerful tools that are contributing majorly in elucidating MIA biosynthesis. This review concentrates mainly on the efforts made through metabolic engineering of MIAs in heterologous microbial factories. KEY POINTS: • Yeast engineering provides alternative production source of phytomolecules • Yeast engineering also helps to discover missing plant pathway enzymes and genes.


Assuntos
Catharanthus , Alcaloides de Triptamina e Secologanina , Catharanthus/química , Catharanthus/genética , Regulação da Expressão Gênica de Plantas , Alcaloides Indólicos/metabolismo , Monoterpenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alcaloides de Triptamina e Secologanina/química , Alcaloides de Triptamina e Secologanina/metabolismo , Vimblastina/química , Vincristina
10.
Int Microbiol ; 25(2): 275-284, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34622356

RESUMO

Vincristine, one of the major vinca alkaloid of Catharanthus roseus (L.) G. Don. (Apocynaceae), was enhanced under in vitro callus culture of C. roseus using fungal extract of an endophyte Alternaria sesami isolated from the surface-sterilized root cuttings of C. roseus. Vindoline, a precursor molecule for vincristine production, was detected for the first time in the fungal endophyte A. sesami which was used as a biotic elicitor in this study to enhance vincristine content in the C. roseus callus. It was identified using high-performance liquid chromatography and mass spectroscopy techniques by matching retention time and mass data with reference molecule. Supplementing the heat sterilized A. sesami endophytic fungal culture extract into the callus culture medium of C. roseus resulted in the enhancement of vincristine content in C. roseus callus by 21.717% after 105-day culture.


Assuntos
Catharanthus , Alternaria , Catharanthus/química , Extratos Vegetais , Vincristina
11.
J Ethnopharmacol ; 284: 114647, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34562562

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Catharanthus roseus (L.) G. Don is a well known medicinal plant belonging to family Apocynaceae that have been traditionally used as medicine since ancient times. C. roseus is a well-recognized herbal medicine due to its anticancer bisindole alkaloids (vinblastine (111), vincristine (112) and vindesine (121)). In the Ayurvedic system of medicine, different parts of C. roseus are used in folklore herbal medicine for treatment of many types of cancer, diabetes, stomach disorders, kidney, liver and cardiovascular diseases. AIM OF THE STUDY: The main idea behind this communication is to update comprehensively and analyze critically the traditional applications, phytochemistry, pharmacological activities, and toxicity of various extracts and isolated compounds from C. roseus. MATERIALS AND METHODS: The presented data covers scientific works on C. roseus published across the world between 1967 and 2021 was searched from various international publishing houses using search engines as well as several traditional texts like Ayurveda and relevant books. Collected data from different sources was comprehensively summarized/analyzed for ethnomedicinal uses, phytochemistry, analytical chemistry, biological activities and toxicity studies of C. roseus. RESULTS AND DISCUSSION: C. roseus has a wide range of applications in the traditional system of medicine especially in cancer and diabetes. During phytochemical investigation, total of 344 compounds including monoterpene indole alkaloids (MIAs) (110), bisindole alkaloids (35), flavonoids (34), phenolic acids (9) and volatile constituents (156) have been reported in the various extracts and fractions of different plant parts of C. roseus. The extracts and isolated compounds of C. roseus have to exhibit many pharmacological activities such as anticancer/cytotoxic, antidiabetic, antimicrobial, antioxidant, larvicidal and pupicidal. The comparative toxicity of extracts and bioactive compounds investigated in dose dependent manner. The investigation of toxicity showed that the both extracts and isolated compounds are safe to a certain limit beyond that they cause adverse effects. CONCLUSION: This review is a comprehensive, critically analyzed summarization of sufficient baseline information of selected topics in one place undertaken till date on C. roseus for future works and drug discovery. The phytochemical investigation including biosynthetic pathways showed that the MIAs and bisindole alkaloids are major and characteristic class of compounds in this plant. The present data confirm that the extracts/fractions and their isolated alkaloids especially vinblastine (111) and vincristine (112) have a potent anticancer/cytotoxic and antidiabetic property and there is a need for further study with particular attention to the mechanisms of anticancer activity. In biosynthesis pathways of alkaloids especially bisindole alkaloids, some enzymes and rearrangement are unexposed therefore it is required to draw special attention. It also focuses on attracting the attention of scientific communities about the widespread biological activities of this species for its better utilization prospects in the near future.


Assuntos
Medicina Tradicional/métodos , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/efeitos adversos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Catharanthus/efeitos adversos , Catharanthus/química , Etnobotânica , Etnofarmacologia , Humanos , Ayurveda/métodos , Compostos Fitoquímicos/efeitos adversos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química
12.
Molecules ; 26(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34770935

RESUMO

Catharanthus roseus is a well-known traditional herbal medicine for the treatment of cancer, hypertension, scald, and sore in China. Phytochemical investigation on the twigs and leaves of this species led to the isolation of two new monoterpene indole alkaloids, catharanosines A (1) and B (2), and six known analogues (3-8). Structures of 1 and 2 were established by 1H-, 13C- and 2D-NMR, and HREIMS data. The absolute configuration of 1 was confirmed by single-crystal X-ray diffraction analysis. Compound 2 represented an unprecedented aspidosperma-type alkaloid with a 2-piperidinyl moiety at C-10. Compounds 6-8 exhibited remarkable Cav3.1 low voltage-gated calcium channel (LVGCC) inhibitory activity with IC50 values of 11.83 ± 1.02, 14.3 ± 1.20, and 14.54 ± 0.99 µM, respectively.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/química , Catharanthus/química , Alcaloides Indólicos/farmacologia , Monoterpenos/farmacologia , Extratos Vegetais/farmacologia , Bloqueadores dos Canais de Cálcio/química , Canais de Cálcio Tipo T/metabolismo , Relação Dose-Resposta a Droga , Alcaloides Indólicos/química , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Monoterpenos/química , Extratos Vegetais/química , Relação Estrutura-Atividade
13.
J Nat Prod ; 84(10): 2709-2716, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34644092

RESUMO

Characterization of cryptic biosynthetic gene clusters (BGCs) from microbial genomes has been proven to be a powerful approach to the discovery of new natural products. However, such a genome mining approach to the discovery of bioactive plant metabolites has been muted. The plant BGCs characterized to date encode pathways for antibiotics important in plant defense against microbial pathogens, providing a means to discover such phytoalexins by mining plant genomes. Here is reported the discovery and characterization of a minimal BGC from the medicinal plant Catharanthus roseus, consisting of an adjacent pair of genes encoding a terpene synthase (CrTPS18) and cytochrome P450 (CYP71D349). These two enzymes act sequentially, with CrTPS18 acting as a sesquiterpene synthase, producing 5-epi-jinkoheremol (1), which CYP71D349 further hydroxylates to debneyol (2). Infection studies with maize revealed that 1 and 2 exhibit more potent fungicidal activity than validamycin. Accordingly, this study demonstrates that characterization of such cryptic plant BGCs is a promising strategy for the discovery of potential agrochemical leads. Moreover, despite the observed absence of 1 and 2 in C. roseus, the observed transcriptional regulation is consistent with their differential fungicidal activity, suggesting that such conditional coexpression may be sufficient to drive BGC assembly in plants.


Assuntos
Catharanthus/genética , Fungicidas Industriais/química , Família Multigênica , Sesquiterpenos/química , Alquil e Aril Transferases/genética , Catharanthus/química , Sistema Enzimático do Citocromo P-450/genética , Genoma de Planta , Doenças das Plantas/prevenção & controle , Plantas Medicinais/química , Plantas Medicinais/genética , Zea mays/microbiologia , Fitoalexinas
14.
Mol Biol Rep ; 48(9): 6249-6258, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34478011

RESUMO

BACKGROUND: Britannin, a Sesquiterpene Lactone isolated from Inula aucheriana, has recently gained attraction in the therapeutic fields due to its anti-tumor properties. This study was designed to evaluate the effect of this agent on Acute Lymphoblastic Leukemia (ALL) cell lines, either as a monotherapy or in combination with Vincristine (VCR). METHODS AND RESULTS: To determine the anti-leukemic effects of Britannin on ALL-derived cell lines and suggest a mechanism of action for the agent, we used MTT assay, Annexin-V/PI staining, ROS assay, and real-time PCR analysis. Moreover, by using a combination index (CI), we evaluated the synergistic effect of Britannin on Vincristine. We found that unlike normal Peripheral Blood Mononuclear Cells (PBMCs) and L929 cells, Britannin reduced the viability of NALM-6, REH, and JURKAT cells. Among tested cells, NALM-6 cells had the highest sensitivity to Britannin, and this agent was able to induce p21/p27-mediated G1 cell cycle arrest and Reactive Oxygen Specious (ROS)-mediated apoptotic cell death in this cell line. When NALM-6 cells were treated with Nacetyl-L-Cysteine (NAC), a scavenger of ROS, Britannin could induce neither apoptosis nor reduce the survival of the cells suggesting that the cytotoxic effect of Britannin is induced through ROS-dependent manner. Moreover, we found that a low dose of Britannin enhanced the effect of Vincristine in NALM-6 cells by inducing apoptotic cell death via altering the expression of apoptotic-related genes. CONCLUSIONS: Overall, our results proposed a mechanism for the cytotoxic effect of Britannin, either as a single agent or in combination with Vincristine, in NALM-6 cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Catharanthus/química , Inula/química , Lactonas/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/farmacologia , Vincristina/farmacologia , Acetilcisteína/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Sequestradores de Radicais Livres/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Células Jurkat , Lactonas/isolamento & purificação , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Sesquiterpenos/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos
15.
Curr Top Med Chem ; 21(10): 895-907, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33902419

RESUMO

INTRODUCTION: Endophyte is considered a source of natural bioactive secondary metabolites that provides an array of bioactive lead compounds. The present study was aimed to determine the antimicrobial and anti-inflammatory potential of fungal endophytes isolated from Catharanthus roseus. METHODS: A total of seven fungal endophytes crude extract were screened against bacterial pathogens. Of these, Curvularia geniculata CATDLF7 crude extract exhibited the most potent inhibitory activity against bacterial pathogens. Hence, CATDLF7 crude extract was subjected to chromatographic separation. This purification leads to the isolation of six pure compounds (1PS - 6PS). Of these, 3PS was found to be a major constituent and most effective against clinical isolates of methicillin- resistant Staphylococcus aureus (MRSA) with minimum inhibitory concentration (MIC) values ranging from 100 to 200 µg/ml. Based on the spectroscopic data, 3PS was characterized as α,ß- dehydrocurvularin. This compound also showed synergistic interaction with norfloxacin and reduced its MIC up to 32-folds with a fractional inhibitory concentration index (FICI) of 0.09. RESULTS: To understand the possible antibacterial mechanism of action, α,ß-dehydrocurvularin alone (100 µg/ml) exhibited efflux pump inhibitory potential by 0.84 fold decreasing in ethidium bromide (EtBr) fluorescence. In addition, α,ß-dehydrocurvularin inhibited inflammatory cytokines TNF-α and IL-6 production, which is further validated by molecular docking scores -4.921 and -5.641, respectively, for understanding orientation and binding affinity. CONCLUSION: Overall, the results highlighted identifying bioactive compound α,ß-dehydrocurvularin, which could be used as an antimicrobial and anti-inflammatory agent.


Assuntos
Anti-Infecciosos/isolamento & purificação , Anti-Inflamatórios/isolamento & purificação , Catharanthus/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Zearalenona/análogos & derivados , Animais , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Endófitos/metabolismo , Feminino , Humanos , Interleucina-6/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Norfloxacino/farmacologia , Extratos Vegetais/farmacologia , Ligação Proteica , Transdução de Sinais , Relação Estrutura-Atividade , Zearalenona/isolamento & purificação , Zearalenona/farmacologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-33141080

RESUMO

Endosulfan has been recognized as a highly controversial pesticide due to its acute toxicity, potential bioaccumulation, persistency, and long-range atmospheric transport. Several plant extracts act as antioxidant agents against wide-range of pesticide toxicity hazards through the free radicals scavenging properties. Plants' secondary metabolites are considered as efficient protective agents against various cellular toxic injuries. Understanding these properties of botanicals, several researchers currently focused on the detoxification and ameliorative potency of plant extracts against highly toxic chemicals. In our studies, we focused on the endosulfan total and its isomers (alpha and beta) induced changes on Drosophila melanogaster and their ameliorative effects by co-administrated with methanolic and aqueous extracts of Catharanthus roseus whole plant. We selected the 1/5th EC50 concentration of alpha-endosulfan, beta-endosulfan, and endosulfan (total) and co-administrated with 1/50th EC50 concentration of aqueous and methanolic extracts and evaluated their ameliorative effects, in terms of verifying the life stage activities, protein profiling and also by using live brain cells imaging. We finally concluded that, the methanolic and aqueous extracts inhibit the toxic impacts caused by endosulfan and its isomers and also increasing the survival rate of the test organism.


Assuntos
Encéfalo/efeitos dos fármacos , Catharanthus/química , Drosophila melanogaster/metabolismo , Endossulfano/toxicidade , Extratos Vegetais/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Encéfalo/citologia , Encéfalo/metabolismo , Drosophila melanogaster/fisiologia , Endossulfano/química , Proteínas de Insetos/metabolismo , Inseticidas/química , Inseticidas/toxicidade , Isomerismo , Microscopia Confocal/métodos , Oxirredução/efeitos dos fármacos , Extratos Vegetais/química , Substâncias Protetoras/farmacologia , Proteoma/metabolismo , Proteômica/métodos
18.
Molecules ; 25(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256043

RESUMO

The Catharanthus roseus plant has been used traditionally to treat diabetes mellitus. Scientific evidence supporting the antidiabetic effects of this plant's active ingredient-vindoline has not been fully evaluated. In this study, extracts of C. roseus and vindoline were tested for antioxidant activities, alpha amylase and alpha glucosidase inhibitory activities and insulin secretory effects in pancreatic RIN-5F cell line cultured in the absence of glucose, at low and high glucose concentrations. The methanolic extract of the plant showed the highest antioxidant activities in addition to the high total polyphenolic content (p < 0.05). The HPLC results exhibited increased concentration of vindoline in the dichloromethane and the ethylacetate extracts. Vindoline showed noticeable antioxidant activity when compared to ascorbic acid at p < 0.05 and significantly improved the in vitro insulin secretion. The intracellular reactive oxygen species formation in glucotoxicity-induced cells was significantly reduced following treatment with vindoline, methanolic and the dichloromethane extracts when compared to the high glucose untreated control (p < 0.05). Plant extracts and vindoline showed weaker inhibitory effects on the activities of carbohydrate metabolizing enzymes when compared to acarbose, which inhibited the activities of the enzymes by 80%. The plant extracts also exhibited weak alpha amylase and alpha glucosidase inhibitory effects.


Assuntos
Alcaloides/química , Antioxidantes/química , Antioxidantes/farmacologia , Catharanthus/química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Vimblastina/análogos & derivados , Glicemia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Secreção de Insulina/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Espécies Reativas de Oxigênio , Vimblastina/química , alfa-Amilases/antagonistas & inibidores
19.
Molecules ; 25(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114628

RESUMO

This study aimed to investigate the impact of plant growth regulators, sucrose concentration, and the number of subcultures on axillary shoot multiplication, in vitro flowering, and somaclonal variation and to assess the phytochemical composition, antioxidant capacity, and enzyme inhibitory potential of in vitro-established callus, somaclonal variant, and normal green shoots of Catharanthus roseus. The highest shoot induction rate (95.8%) and highest number of shoots (23.6), with a mean length of 4.5 cm, were attained when the C. roseus nodal explants (0.6-1 cm in length) were cultivated in Murashige and Skoog (MS) medium with 2 µM thidiazuron, 1 µM 2-(1-naphthyl) acetic acid (NAA), and 4% sucrose. The in vitro flowering of C. roseus was affected by sucrose, and the number of subcultures had a significant effect on shoot multiplication and somaclonal variation. The highest levels of phenolics and flavonoids were found in normal green shoots, followed by those in somaclonal variant shoots and callus. The phytochemicals in C. roseus extracts were qualified using liquid chromatography-tandem mass spectrometry. A total of 39, 55, and 59 compounds were identified in the callus, somaclonal variant shoot, and normal green shoot tissues, respectively. The normal green shoot extracts exhibited the best free radical scavenging ability and reducing power activity. The strongest acetylcholinesterase inhibitory effects were found in the callus, with an IC50 of 0.65 mg/mL.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Catharanthus/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
20.
Appl Microbiol Biotechnol ; 104(11): 4811-4835, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32303816

RESUMO

Catharanthus roseus (L.) G. Don, also known as Madagascar periwinkle or Sadabahar, is a herbaceous plant belonging to the family Apocynaceae. Being a reservoir for more than 200 alkaloids, it reserves a place for itself in the list of important medicinal plants. Secondary metabolites are present in its leaves (e.g., vindoline, vinblastine, catharanthine, and vincristine) as well as basal stem and roots (e.g., ajmalicine, reserpine, serpentine, horhammericine, tabersonine, leurosine, catharanthine, lochnerine, and vindoline). Two of its alkaloids, vincristine and vinblastine (possessing anticancerous properties), are being used copiously in pharmaceutical industries. Till date, arrays of reports are available on in vitro biotechnological improvements of C. roseus. The present review article concentrates chiefly on various biotechnological advancements based on plant tissue culture techniques of the last three decades, for instance, regeneration via direct and indirect organogenesis, somatic embryogenesis, secondary metabolite production, synthetic seed production, clonal fidelity assessment, polyploidization, genetic transformation, and nanotechnology. It also portrays the importance of various factors influencing the success of in vitro biotechnological interventions in Catharanthus and further addresses several shortcomings that can be further explored to create a platform for upcoming innovative approaches. KEY POINTS: • C. roseus yields anticancerous vincristine and vinblastine used in pharma industry. •In vitro biotechnological interventions prompted major genetic advancements. • This review provides an insight on in vitro-based research achievements till date. • Key bottlenecks and prospective research methodologies have been identified herein.


Assuntos
Alcaloides/isolamento & purificação , Biotecnologia/tendências , Catharanthus/química , Plantas Medicinais/química , Alcaloides/química , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Folhas de Planta/química , Raízes de Plantas/química , Metabolismo Secundário , Vimblastina/química , Vimblastina/isolamento & purificação , Vincristina/química , Vincristina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...